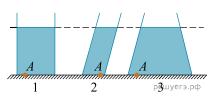
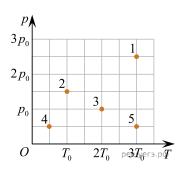
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

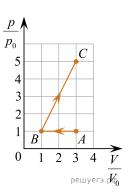

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Среди перечисленных ниже физических величин скалярная величина указана в строке:
 - 1) перемещение
- сила
- 3) импульс
- 4) скорость
- 5) работа
- **2.** Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 3.0$ с он проехал путь $s_1 = 45$ м, то за промежуток времени $\Delta t_2 = 5.0$ с велосипедист проедет путь s_2 , равный:
 - 1) 70 м
- 2) 75 м
- 3) 80 м
- 4) 85 m
- 5) 90 M
- **3.** Материальная точка равномерно движется по окружности радиусом R = 37 см. Если в течение промежутка времени $\Delta t = 23$ с материальная точка совершает N = 40 оборотов, то модуль её скорости υ равен:
 - 1) 2 m/c
- 2) 4 m/c 3) 7 m/c
- 4) 9 M/c
- 5) 10 m/c
- **4.** На поверхности Земли на тело действует сила тяготения, модуль которой $F_1 = 144 \text{ H}$. На это тело, когда оно находится на расстоянии $r = 3R_3$ (R_3 — радиус Земли) от центра Земли, действует сила тяготения, модуль которой F_2 равен:

- 1) 9 H 2) 16 H 3) 24 H 4) 36 H
- 5) 48 H
- 5. Пять вагонов, сцепленных друг с другом и движущихся со скоростью, модуль которой $v_0 = 3,5 \, \frac{{}^{\mathrm{M}}}{c},$ столкнулись с двумя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости υ будет равен:


- 1) $1,0 \frac{M}{C}$ 2) $1,5 \frac{M}{C}$ 3) $2,0 \frac{M}{C}$ 4) $2,5 \frac{M}{C}$ 5) $3,0 \frac{M}{C}$

6. На рисунке изображены три открытых сосуда (1, 2 и 3), наполненные водой до одинакового уровня. Давления p_1, p_2 и p_3 воды на дно сосудов в точке Aсвязаны соотношением:


1)
$$p_2 > p_1 > p_3$$
 2) $p_3 > p_1 > p_2$ 3) $p_1 = p_2 = p_3$ 4) $p_1 = p_2 > p_3$
5) $p_1 > p_2 > p_3$

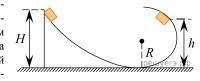
7. На p - T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

- 1) 1 2) 2 3)3 5)5
- 8. При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300 \text{ K}$ до $T_2 = 420 \text{ K}$. Если начальное давление газа $p_1 = 150$ к Π а, то конечное давление p_2 газа равно:
 - 1) 180 κΠa
- 190 κΠα
- 3) 200 k∏a
- 4) 210 κΠa
- 5) 220 κΠa

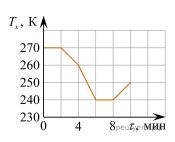
9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

1)
$$U_C > U_A > U_B$$
 2) $U_C > U_B > U_A$ 3) $U_B > U_C > U_A$ 4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$

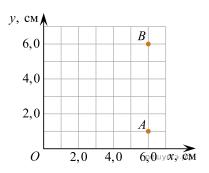
10. Для полного расплавления льда ($\lambda = 330 \text{ к/Дж/кг}$) массой m = 3.0 г. находящегося при температуре t = 0 °C, льду необходимо сообщить минимальное количество теплоты, равное:

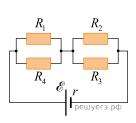

1) 990 кДж

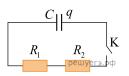
2) 900 кДж

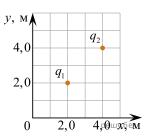

3) 99 кДж 4) 9.1 кДж

5) 0.99 кДж


- 11. С башни в горизонтальном направлении бросили камень с начальной скоростью, модуль которой $v_0 = 20$ м/с. Если непосредственно перед падением на землю скорость камня была направлена под углом $\alpha = 45^{\circ}$ к горизонту, то камень упал на расстоянии s от основания башни равном ... м.
- 12. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вил: $x(t) = A + Bt + Ct^2$, гле A = 7.0 м. B = 4.0 м/с. C = 1.0 м/с². Если масса тела m =4.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.
- 13. Трактор, коэффициент полезного действия которого η = 25 %, при вспашке горизонтального участка поля равномерно двигался со скоростью, модуль которой $\upsilon = 3.6$ км/ч. Если модуль силы тяги трактора F = 20 кH, то за промежуток времени Δ t = 1,9 ч масса m израсходованного топлива (q = 42 МДж/кг) равна ... **кг**.
- **14.** С высоты H = 50 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R = 26 см (см. рис.). Если траектория движения бруска лежит в вертикальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.

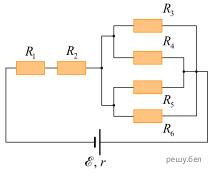

- **15.** Идеальный одноатомный газ, начальный объем которого V_1 , а количество вещества остается постоянным, находится под давлением $p_1 = 2 \cdot 10^5$ Па. Газ нагревают сначала изобарно до объема $V_2 = 5 \text{ м}^3$, а затем продолжают нагревание при постоянном объеме до давления $p_2 =$ $4 \cdot 10^5$. Если при переходе из начального состояния в конечное газ получил количество теплоты O= 3 МДж, то его объем V_1 в начальном состоянии равен ... \mathbf{m}^3 .
- **16.** В плавильной печи с коэффициентом полезного действия $\eta = 50.0$ % при температуре t_1 = 20 °C находится металлолом $\left(c=461\ \frac{\mbox{$\frac{\Pi \hbox{$\kappa$}}{\mbox{$\kappa$}}$}}{\mbox{κ}\mbox{Γ}\cdot\mbox{K}},\ \lambda=270\ \frac{\mbox{κ}\mbox{$\frac{\Pi \hbox{$\kappa$}}{\mbox{$\kappa$}}$}}{\mbox{κ}\mbox{Γ}}\right),$ состоящий из однородных металлических отходов. Металлолом требуется нагреть до температуры плавления $t_2 = 1400$ °C и полностью расплавить. Если для этого необходимо сжечь каменный уголь $\left(q = 30,0 \, \frac{\text{МДж}}{\text{кг}}\right)$ массой M = 18.0 кг, то масса m металлолома равна ... кг.
- 17. На рисунке изображен график зависимости температуры $T_{\rm v}$ холодильника тепловой машины, работающей по циклу Карно, от времени т. Если температура нагревателя тепловой машины $T_{\rm H} = 527$ °C, то максимальный коэффициент полезного действия η_{\max} машины был равен ... %.


- **18.** Абсолютный показатель преломления воды n = 1,33. Если частота световой волны v = 1,33508 ТГц, то длина λ этой волны в воде равна ... **нм**.
- **19.** Если точечный заряд q = 2,50 нКл, находяшийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... B.


20. Участок цепи, состоящий из четырех резисторов (см. рис.), сопротивления которых $R_1=10,0$ Ом, $R_2=20,0$ Ом, $R_3=30,0$ Ом и $R_4=40,0$ Ом, подключен к источнику тока с ЭДС $\epsilon=20,0$ В и внутренним сопротивлением r=20,0 Ом. Тепловая мощность P_4 , выделяемая в резисторе R_4 , равна ... **мВ**т.

- **21.** К электрической сети, напряжение в которой изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность P = 900 Вт. Если действующее значение напряжения на плитке $U_{\pi} = 127$ В, то амплитудное значение силы тока I_0 в сети равно ... **A**.
- **22.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=4,0$ МОм и $R_2=2,0$ МОм. Если электрическая емкость конденсатора C=1,5 нФ, а его заряд q=18 мкКл, то количество теплоты Q_2 которое выделится в резисторе R_2 при полной разрядке конденсатора после замыкания ключа К, равно ... мДж.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1=24$ нКл и $q_2=-32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат $\frac{\mathrm{B}}{\mathrm{C}}$.

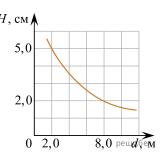

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}$ Au. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyr.},$ то за промежуток времени $\Delta t=8,1~{
 m cyr.}$ распадётся ... тысяч ядер $^{198}_{79}$ Au.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pa_J}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

5/6